ÓPTICA FÍSICA
Si no considerásemos la luz como una onda electromagnética, nos sería imposible explicar los fenómenos de interferencia, dispersión, difracción y la polarización de la luz. La parte de la Óptica que estudia estos fenómenos se denomina Óptica Física.
Hemos dicho que la luz es una onda electromagnética. ¿Cómo es que no observamos, un fenómeno característico de las ondas, como es la interferencia?, ¿Cuál es la causa de que al encender dos bombillas de luz no aparezca el diagrama de máximos y mínimos característicos de este Fenómeno?
Si recordamos las ondas mecánicas, advertiremos que una de las condiciones fundamentales para que se produzca un diagrama de interferencias es que las fuentes de donde proceden las ondas sean coherentes, esto es, que emitan en fase o que su diferencia de fase sea constante; de no ocurrir esto, las líneas nodales del diagrama se desplazarían continuamente y no llegaría a observarse el diagrama, ya que el ojo humano es incapaz de seguir estas fluctuaciones.
La solución al problema de la coherencia la consiguió Young, utilizando dos haces de un mismo foco luminoso. En efecto, consideremos un frente de onda, al que hacemos pasar por dos ranuras sumamente estrechas (del orden de una longitud de onda) y próximas. Es sabido que, en este caso, cada ranura se comporta como una fuente puntual de acuerdo con el principio de Huygens y, como el frente de onda que llega a ambas ranuras es el mismo, es evidente que las dos fuentes así obtenidas están en fase. En la fig. 2.1.8 hacemos un estudio de la interferencia de las ondas luminosas que pasan a través de dos rendijas. En la fig. 2.1.8 A aparece primero una fuente puntual. Están representados, en dicha figura, los distintos frentes de onda propagándose hasta encontrar a las dos rendijas que se comportan, de acuerdo con las propiedades de las ondas, como dos fuentes puntuales emitiendo en fase.
En la fig. 2.1.8 B hemos trazado un eje por el punto medio entre las dos fuentes F2 y F3, que corta a la pantalla en el punto 0. La distancia que las ondas luminosas tienen que recorrer desde F2 a 0 y desde F3 a 0 son las mismas; por lo tanto, en la pantalla siempre habrá un máximo de luz asociado a ese punto, ya que las ondas llegan en concordancia de fase.
Fig. 2.1.8 Interferencia de ondas luminosas que pasan a través de dos rendijas
Difracción.
Los hechos principales observados en los fenómenos de difracción pueden predecirse con ayuda del principio de Huyggens. De acuerdo con él, cada punto del frente de onda puede considerarse como el origen de una onda secundaria que se propaga en todas direcciones y, para encontrar el nuevo frente de onda, debemos sumar la contribución de cada uno de los frentes de onda secundarios en cada punto.
Para facilitar las cosas, consideremos una antena emitiendo ondas electromagnéticas. En la fig. 2.1.9 A se puede apreciar que el campo eléctrico oscila perpendicularmente a la dirección de propagación (hemos omitido el campo magnético para simplificar).
Observamos, además, que en todos los puntos de cualquier plano Fijo en el espacio y perpendicular a la dirección de propagación de la luz el campo eléctrico oscila a lo largo de una línea vertical. Se dice, en este caso, que las ondas están linealmente polarizadas o simplemente que están polarizadas. En la figura 2.1.9 B se representa esquemáticamente la luz polarizada linealmente.
En la luz natural el campo eléctrico (y, por lo tanto, el campo magnético que actúa en dirección perpendicular) puede vibrar en todas las direcciones. Se dice que la luz natural no está polarizada. Figura 2.1.9 C.
Figura 2.1.9 (A) Las ondas electromagnéticas radiadas por una antena están polarizadas linealmente. (B) Diagrama esquemático de luz polarizada linealmente. (C) Luz ordinaria.
Hay varios métodos para separar total o parcialmente de un haz de luz natural las vibraciones que tienen una dirección particular. Uno de ellos consiste en usar el conocido fenómeno de la reflexión. Cuando la luz natural incide sobre una superficie reflectante, se observa que existe reflexión preferente para aquellas ondas en las cuales el vector eléctrico vibra perpendicularmente al plano de incidencia (constituye una excepción el caso de incidencia normal, en el cual todas las direcciones de polarización se reflejan igualmente). Para un ángulo de incidencia particular, llamado ángulo de polarización, no se refleja más luz que aquella para la cual el vector eléctrico es perpendicular al plano de incidencia (fig. 2.1.10). Si el elemento reflector de la luz es vidrio, se refleja aproximadamente un 15 por 100 de la radiación perpendicular al plano de incidencia; el otro 85 por 100 se transmite y constituye luz parcialmente polarizada.
Existen cristales que presentan un fenómeno llamado birrefringencia. Cuando la luz atraviesa uno de estos cristales, el rayo luminoso incidente se divide en dos rayos que se llaman rayo ordinario y extraordinario, respectivamente.
Figura 2.1.10 Cuando la luz incide bajo el ángulo de polarización, la luz reflejada está polarizada linealmente.
Fotometría:
La energía radiante tiene tres características matiz o tono, saturación y brillo. Las dos primeras son de las que nos hemos ocupado antes y hacen referencia al aspecto cualitativo de la radiación. En esta unidad nos referiremos al aspecto cuantitativo de la energía radiante, es decir al brillo, a la cantidad de luz.
La fotometría es pues la parte de la física que trata de la medida de la luz en su aspecto cuantitativo considerando dos factores, uno objetivo (el espectro visible) y otro subjetivo (el ojo).
Figura 2.1.11
No hay comentarios.:
Publicar un comentario